Fundamentals of Data Structures with C 389

void Postorder (TNODE p)
{
if (p)
{
Postorder (p->left);
Postorder (p->right) ;
printf("%d ", p->info);

}

/* to allocate dynamic memmory */
TNODE talloc (void)
{
return (TNODE) malloc (sizeof (struct Tree));

}
Sample Run

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit

Enter Choice: 1

Enter the Element: 56

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit

Enter Choice: 1

Enter the Element: 100

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit ’

Enter Choice: 1

Enter the Element: 72

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit

Enter Choice: 2

56 100 72

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit

Enter Choice: 3

56 72 100

1 Create 2 Preorder 3 Inorder 4 Postorder
5 Exit

Enter Choice: 4

72 100 56

10.13

Write recursive C programs for
(a) Searching an element in a given list of integers using binary
search method.
(b) Solving the Towers of Hanoi problem.

392 Chapter10 » C Lab Programs

int n = 0;
int 1 = 0;
FILE *fp;
fp = fopen("str.dat", "r");
if (!fp)
{
printf ("Error in opening file\n");
exit(1l);
}
while (!feof(fp))
{
fscanf (fp, "%s", &t);
strepy(alil,t);
i++, n++;
}

InsertionSort(a, n);
printf("The sorted Strings:\n");
for (i = 0; i < n; i++)

printf("%s\n",ali]);

printf("\n");
fclose(£fp);

void InsertionSort(char a[] [MAX], int n)

int j,p,x;

char k([MAX];

for (j = 1; j < n; j++)

{
strcpy(k,aljl);
for (p = j-1; (p >= 0 && stremp(k, alpl) < 0); p--)

strcpy(alp+l], alpl);

strcpy(alp+1], k);

}

}
Sample Run

Contents of ''str.dat"

The sorted Strings:

Z00 N
balloon an
ant balloon
eminent eminent

Z00

Additional Problems

This is a special section for thos- who are ready to take up the challenging problems
and grasp the solution. The author has made an attempt to present few mind breaking

exercises and also give its solutions. Readers are advised to read this section after
understanding thoroughly all the chapters of this text.

AP 1.1 What is the output of the following program?

#include <stdio.h>
int x, r;
void main()
{
x = 5;
r = f(&x) * f(&x);
printf("%d\n", r);

396

Appendix -1 » Additional Problems
Show the values of j after each iteration.
Solution: You may notice that the key point is the static declaration for variable i in

function inc (). For each call count retain its old value. Hence, we can show the
tracing of the for loop as below:

R A

0 0
1 1
2 3
3 6
4 10

So the final value of j is 10.

AP 1.6 Assume two arrays p[l:n] and q[1:n] that are uninitialized and a variable

count initialized to 0. Consider the following functions set() and iset()
int set (int 1)

{
count++;
qlcount] = %
pli] = count;
}
int iset (int i)
{
1f (p[i] <= 0 || pri]l > count) /* 1 */
return 0;
if (glpli]] 1= 1) /* 2 */
return 0; .
return 1;
}

(i) Assume that we call the function set() in the Jollowing sequence:

set(7); set(3); set(9);
After these calls, what is the value of count, what is contents of q(1], q(2], q[3] and
pl7], pi3], p[9]?

Solutioa: The values of count and i on entry to set () are 0, 7 respectively. Hence,
ql1] =7andp[7] =1. At the end, we have p and g holding values as shown below:
qll] =7, ql2] = 3, q[3] =9
pl7] = 1, pl[3] = 2, p[9] = 3
You can notice here that the contents of q are ‘he index values of p and the contents of
p are the index values of q.

Fundamentals of Data Structures with C 397

(ii) Show that if set (i) has not been called for some i, then regardless of what p [1i]
contains, iset (i) will return false.

Solution: To solve this problem we must prove that either of i £ conditions give always
true. This means that what ever be the value of p[1] (0 or positive or negative) both or
at least one condition evaluates to true.

Let us check on these three values of pli] (for some value of i) and also assume
that count = 0.

1. Whenp[i] =0: pli] <=0is true returned value is false.

2. Whenp[i] = negative: pli] <=0istrue returned value is false.
3. Whenp[i] = positive: p[i] >countistrue returned value is false.

When p[i] is positive (but not 0) but less than count, then statement 1 evaluate to
false and so statement 2 is executed. But this situation will not occur at all, because
with out calling set (i) for some i, the value of count will not change. Its value
will remain as 0. Therefore, if we prove that the statement 1 is true always, then the
returned value must be false.

AP 1.7 What is the output of the following C code?

void main()

{
int x, y;
X = 10; y = 3;
f(ey, &x, &x) ;
printf("%d %d\n", x, y);
}
void f(int *x, int *y, int *z) /* x = 3, y = 10, z = 10 */
y ,

'y += 4;
*Z = *x + ky 4+ %z,
}

Solution: The function £ () is invoked by sending the address of y and x. During the
execution of £ (), we have values of x = 3,y=10, and z = 10.

Y=Yy +4 =10 + 4 = 14;

This value is written at the memory location pointed by y (because it is a pointer
variable) and also pointed by z. The reason why variable z is also afftected is because
y and z point to the address of x (see main () program where address of x is passed to
both y and z in £ ()). Next statement is executed as,

400 Apnendix -1 » Additional Problems

AP 4.1 Consider the following recursive function:
int f(int x)
{
if (x > 100) return x - 10;
else return f£(f(x + 11));
) ‘
Assume taat the function is invoked as f(95), what is the returned value?

Solution: The steps that are executed by the function £ () are shown below:

(1) £(95)

(2) £(£(106)) // returned value is 96
(3) £(£(107)) // returned value is 97
(4) £(£(108)) // returned value is 98
(5) £(£(109)) // returned value is 99
(6) £(£(110)) // returned value is 100
(7) £(£(111)) // returned value is 101

Since 101 is greater than 100, no more recursive calls will be initiated. Hence x — 100
101 — 10 = 91 will be returned to the previous calling program. Since no other work is
to be done in this environment this value is carried until the main program is reached.
Therefore, the final value returned by this function is 91.

AP 4.2 Consider the following C code:
int Trial(int a, int b, int c)

{
1f ((a >= b) && (c < b))
return b;
else if (a >= b)
return Trial(a,c,b);
else return Trial(b,a,c);
}
What does this function do?

Solution: Let us take up an example to find out what happens when we execute this
function.

Trial(5,10,7) -> Trial(10,5,7) -> Trial(10,7,5)

The final value returned is 7. This means that the function Trial () finds the .middle
element out of three elements.

Fundamentals of Data Structures with C 401

AP 4.3 Suppose you are given an array all:n]l and a function
Reverse(a,1,3j) which reverses the order of elements in a between positions i
and j (both inclusive). What does the following sequence do:

Reverse(a, 1, k); :

Reverse(a, k+1, n);

Reverse(a, 1, n);
where, 1 <k <n.

Solution: Let us take an example string and execute the three calling sequences and
assume k = 2: _

Reverse("abcd",1,2) »» bacd

Reverse("bacd",3,4) »» badc

Reverse("badc",1,4) »» cdab
Comparing the final value with the original string, we can easily note that the three
sequence of operations rotates a left by k positions. ’

To check our conclusion, let us consider another example with k = 3 and
a = "ancd".

Reverse("abcd",1,3) »» cbad

Reverse("cbad",4,4) »» cbad

Reverse("cbad",1,4) »» dabc
You c7a see that the string is reversed left by k (=3) positions.

AP 4.4 The follow.ng piece of C code computes Fibonacci numbers recursively.

Assume that you are given an array f[0:M] with all elements initialized to zero.
int Fib(int n)

{
if (n > M) return -1; /* Error */
if (n == 0) return 1;
1f (n == 1) return 1;
if () /* 1 */
return ; /* 2 */
t = Fib(n-1) + Fib(n-2);
/* 3 */
return t;
}

Now fill in the blanks with expressions/statements to make Fib () store and reuse
computed Fibonacci values.

Solution: The notion in this problem is to store the computed values of Fib (n) for a
particular value of n. This stored value in the array £ will be used by later calls. For

402 Appendix -1 » Additional Problems

example, if we make a call with n = 3, i.e. Fib(3), by storing the value of Fib (2)
already in array f, it is easier to reduce the number of recursive calls. Hence, we can

write

for statement 1: f[n] =0
for statement 2: fin]

for statement 3: fln] = t;

AP 4.5 Write the statements 1, 2, and 3 in the following C function so that it
computes the depth of a binary tree.
int Depth (Tree t)

{
int x, y;
1f (It) return 0;
x = Depth(t->left);
(1)

(2) 41f (x > y) return

(3) else return

Solution: The solution to this problem is st-aight forward and it has already been
discussed in Chapter 7 (Page 243). Therefore, the statements can be writ’zn as,

(1) vy = Depth(t->right);
(2) ++x;
(3) ++y;

AP 5.1 Suppose a stack implementation supports, in addition to PUSH and FOP, an
additional operation REVERSE, which reverses the order of the elements on the
stack.

To implement a queue using the above stack implementation, show how to
implement (i) Qlnsert (inserts an element in the queue) nsing a single operation and
(ii) DQueue (deletes an element from the queue) using a sequence of three
operations.

Solution: (i) Since the Qlnsert operation is to be done using a single operation, we .
simply call PUSH so that the elements will be inserted with the stack pointer pointing
to the recently inserted element.

Fundamentals of Data Structures with C 403

(ii) As we need to delete the oldest element inserted with just a POP. Because, the stack
pointer will be pointing to the most recently inserted element. Hence, we use the
following three operations:

(1) REVERSE

(2) POP

(3) REVEKSE
The operation (1) brings the oldest element to the top of the stack. Later we extract the
element using POP — operation (2). Finally using operation (3), we arrange the elements
in the original fashion.

AP 7.1 Prove that a rooted labeled binary tree can't be uniquely constructed given its
postorder and preorder traversals.

Solution: Referring to Section 7.6.2 (page 236), it is evident that a labeled binary tree
can be uniquely constructed given its preorder and inorder traversals. With out the
inorder traversal, it is not possible to censtruct the tree uniquely.

AP 7.2 A complete n-ary tree is one in which every node has 0 or n sons. If x is the
number of internal nodes of a complete n-ary tree, what is the number of leaves in it?

Solution: We know that, a complete binary tree with x internal nodes has x + 1 leaves
(the proof is based upon the height of the binary tree). The problem now is to be solved
for n-ary tree. Hence, we have

No.ofleaves=x*(n-1) + 1

AP 7.3 Draw the binary tree with nodes a, b, c, d, e, Sfand g for which the inorder and
postorder traversals are as follows:

Inorder: afbcdge
Postorder: afcgedb

- Solution: From Section 7.6.2, the answer can readily be written as,

404

Appendix -1 » Additional Problems

(b)
(m @
@ © (¢
(®

AP 7.4 Draw the min-heap that results from insertion of the following elements in
order into as initially empty min-heap: 7, 6, 5, 4, 2, 3, 1. Show the result after the
deletion of the root of the heap.

Solution: o

Fig. 1 Insert7 Fig. 2 Insert 6

Fig. 3 Insert 5

Fig. 4 Insert 4

(2) (2)
(4) (© O 3)

OO O OIO

Fig. 5 Insert 2 Fig. 6 Insert 3

Fundamentals of Data Structures with C ' 405

O 60 G
Fig. 7 Insert 1

(2)
(4) (3)

Fig. 8 After deleting root (element 1)

AP 7.5 Consider the following nested representation of binary trees: (X Y Z) indicates
Y and Z are the left and right subtrees, respectively of node X. Note that Y and Z may
NULL, or further nested. Which of the following represents a valid binary tree?

(1) (1 2 (4 56 7))

(2) (1(2 3 4) (5 6 7))

(3) (1 ((2 3 4) 56) 7)

(4) (1 (2 3 NULL) (4 5))

Solution: ,

(1) In the first case, you find that there are four elements 4, 5,.6. 7 that can not make
valid binary trce.

(2) In this case, the left and right subtrees for node 1 are (2 3 4) and (5 6 7). Similarly,
for each these subtrees, you have left and right subtrees. Hence, the second choice
represents a valid binary tree.

(3) & (4) These sequences do not have the required binary structure.

AP 7.6 Let LASTPOST, LASTIN and LASTPRE denote the last vertex visited in a
postorder, inorder and preorder traversal, respectively, of a complete binary tree.
Which of the following is alwcys true?

(1) LASTIN = LASTPOST

(2) LASTIN = LASTPRE

(3) LASTPRE = LASTPOST

Solution: The second combination is always true.

Appendix -1 » Additional Problems

AP 7.7 Insert the following clements into a binary search tree in the order specified
below: ,
15,32,20,9,3,25, 12,1

Solution:

(1) (15 NULL NULL)

(2) (15 NULL 32)

(3) (15 NULL (32 20 NULL))

(4) (159 (3220 NULL))

(5) (1593 NULL) (32 20 NULL))

(6) (15 (9 3 NULL) (32 (20 NULL 25) NULL))

(7) (15 (93 12) (32 (20 NULL 25) NULL))

(8) (15 (9 (3 1 NULL) NULL) (32 (20 NULL 25) NULL))

